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Abstract: Neurodevelopmental disorders (NDDs) encompass a range of conditions that begin during

the developmental stage and cause deficits that lead to disruptions in normal functioning. One class

of chemicals that is of increasing concern for neurodevelopmental disorders is made up of per- and

polyfluoroalkyl substances (PFAS). In this comprehensive literature review, we investigated data

from epidemiological studies to understand the connection between PFAS exposure and neurodevel-

opmental endpoints such as cognitive function, intelligence (IQ), and memory, along with behavioral

changes like Attention-Deficit Hyperactivity Disorder (ADHD) and Autism Spectrum Disorders

(ASD). When we reviewed the findings from individual studies that analyzed PFAS levels in biolog-

ical samples and their association with NDD, we concluded that there was a correlation between

PFAS and neurodevelopmental disorders. The findings suggest that children exposed to higher PFAS

levels could potentially have an increased risk of ASD and ADHD along with an inhibitory effect on

IQ. While the results vary from one study to another, there is increasing association between PFAS

exposure and neurodevelopmental disorders. Importantly, the findings provide valuable insights

into the adverse effects associated with PFAS exposure and neurodevelopment.

Keywords: neurodevelopment; PFAS; Intelligence Quotient (IQ); Attention-Deficit Hyperactivity

Disorder (ADHD); Autism Spectrum Disorders (ASD); risk assessment

1. Introduction

According to the Diagnostic and Statistical Manual of Mental Disorders (DSM-5),
neurodevelopmental disorders (NDD) are defined as a group of conditions with onset in
the developmental period, inducing deficits that produce impairments of functioning [1].
Impairments of cellular growth and metabolism during critical periods of prenatal brain
development may result from the effects of environmental toxins, nutritional deficits, ma-
ternal illnesses, and genetic disorders, alone or in combination [2]. It has been established
that the environment plays a crucial role in influencing juvenile health, with an increased
risk of negatively affecting neurodevelopment [3]. Additionally, the significant increase
in the occurrence of neurodevelopmental disorders suggests that environmental factors
could be a major contributing cause [4]. There are approximately 200 chemicals that have
been found to be neurotoxic in humans, and there is at least some evidence of neurotoxicity
deriving from animal studies for many more [5,6]. However, of over 80,000 chemicals
on the market, only a handful (approximately 200) have undergone developmental neu-
rotoxicity testing according to the established guidelines [6,7]. One class of chemicals
that is of increasing concern for neurodevelopmental disorders is made up of per- and
polyfluoroalkyl substances.

Per- and polyfluoroalkyl substances (PFAS) are a varied collection of synthetic com-
pounds defined by their chemical structure, which includes one or more carbon atoms
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bonded to fluorine atoms, forming fully fluorinated groups like −CF3 (perfluorinated
methyl) or −CF2− (perfluorinated methylene). These substances differ in their carbon
chain lengths, the degree of fluorination, and the types of additional chemical groups that
they may contain [8]. The development of PFAS began in the 1930s, and their unique
property of interacting with both hydrophobic and hydrophilic substances has driven their
widespread adoption in a range of industrial and commercial uses [9]. PFAS are often
used for their “non-stick” and surface-tension-lowering properties, which makes them
useful for repelling oil and water (preventing stains) and modifying surface chemistry [10].
Humans are exposed to PFAS primarily through consuming contaminated food and water,
inhaling or ingesting dust and fumes from PFAS-containing items found in residential and
office environments, and through occupational contact in industries that manufacture or
utilize PFAS [11,12]. The most significant source of human exposure to PFAS is dietary
intake (food and water) [13]. In certain situations, the intake of PFAS through drinking
water can be just as significant as dietary sources of these chemicals [14]. Several studies
have detected PFAS in surface- and groundwater worldwide, both of which are important
sources for drinking water production and as a result, public concern has arisen over
human exposure risks to PFAS [15].

Despite the extensive and widespread use of PFAS over recent decades, it was only
in recent years that significant attention was paid to human exposure to these chemicals
and their potential negative health impacts [16]. PFAS pose numerous environmental
and health risks. While some PFAS are regarded as having minimal health impact, oth-
ers are linked to harmful effects in both humans and wildlife at present environmental
exposure levels [17]. PFAS has been associated with adverse effects in many organs and
systems, including reproductive [18,19], immune [20,21], endocrine [22–25], hepatic [26],
cardiovascular [27,28], and neurodevelopmental effects [29–32]. Neurodevelopment begins
shortly after conception, around three weeks into pregnancy, and progresses through the
stages of infancy and into puberty [33]. Various pieces of evidence indicate that the nervous
system in development may be more vulnerable, or differently affected, by toxic exposures
compared to the adult nervous system [34].

Extensive research shows that various PFAS are frequently found in pregnant
women [35–37], and that the placenta is a reasonable target for PFAS [38,39]. PFAS accu-
mulate in the placenta and pass the placental barrier, affecting the developing embryo [40].
Studies have shown that PFAS can cross the placental barrier and are associated with fetal
growth restriction, immunosuppression, neurotoxicity, and some other health effects [41,42].
The ability of PFAS to pass through the placenta varies depending on factors such as the
length of the carbon-fluorine chain, the presence of functional groups, and the overall
chemical structure. This process is largely influenced by the interaction of PFAS with
serum carrier proteins and placental transport mechanisms [43]. Furthermore, It has been
observed that young children tend to reach their highest PFAS concentrations before the
age of two [44], possibly due to cumulative exposure via breastfeeding [45,46]. The com-
bination of exposure routes from gestation through adolescence makes PFAS an agent of
neurodevelopmental toxicity. Increasing evidence from epidemiological research suggests
that exposure to PFAS during pregnancy might influence neurodevelopment in children.
This could affect various cognitive functions, including learning, IQ, and memory, and may
also be related to behavioral disorders such as ADHD and Autism Spectrum Disorders
(ASD) [11,47]. While IQ, ASD, and ADHD constitute prominent endpoints in the study
of neurodevelopmental disorders, the broader category of neurodevelopmental disorders
encompass a range of complex conditions marked by impairments in cognitive function,
communication abilities, behavioral patterns, and motor skills, all stemming from atypical
brain development [48].

The US Centers for Disease Control and Prevention (CDC) has reported, based on
findings from the National Health and Nutrition Examination Survey (NHANES), that
PFAS have been found in the bloodstream of 97% of people in the United States [49]. With
the omnipresence of PFAS in humans, there is an increasing concern of PFAS exposure
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throughout prenatal and postnatal development. Given the increasing concerns, through
this review, we explore epidemiological studies examining the association between early-
life PFAS exposure and childhood neurodevelopmental disorders, specifically focusing on
IQ, ADHD, and ASD.

2. Materials and Methods

2.1. Data Sourcing

To investigate the neurodevelopmental toxicity of per- and polyfluoroalkyl substances,
a comprehensive literature search was conducted using PubMed. The search strategy
included a combination of keywords related to PFAS and neurodevelopmental outcomes.
The primary search terms used were: “PFAS”, “per- and polyfluoroalkyl substances”,
“neurodevelopment”, “IQ”, “intelligence quotient”, “ASD”, “autism spectrum disorder”,
“ADHD”, and “attention deficit hyperactivity disorder”. These terms were combined using
the Boolean operators “AND” and “OR” to form the search string: (“PFAS” OR “per-
and polyfluoroalkyl substances”) AND (“neurodevelopment” OR “IQ” OR “intelligence
quotient” OR “ASD” OR “autism spectrum disorder” OR “ADHD” OR “attention deficit
hyperactivity disorder”). Studies had to include clear exposure assessment for PFAS in
humans. We included all primary epidemiological studies that presented quantitative
measures of the association between at least one type of PFAS and at least one neurode-
velopmental disorder. Specifically, this encompassed research that provided statistical
estimates of how PFAS exposure correlates with neurodevelopmental outcomes. We ex-
cluded studies that were reviews or focused on non-epidemiological aspects, such as
mechanistic studies, in vitro experiments, or animal research. Additionally, we did not
consider human studies that failed to provide quantitative estimates of the relationship
between PFAS and neurodevelopmental disorders. (Figure 1).

tt

tt

 

Figure 1. Study Flow Design.
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2.2. Exposure Assessment

Exposure assessment in the included studies primarily involved measuring concentra-
tions of PFAS compounds in biological samples, such as serum or plasma, from participants.
These measurements were typically obtained through high-performance liquid chromatog-
raphy coupled with tandem mass spectrometry (HPLC–MS/MS), a highly sensitive and
specific analytical method [50,51]. However, a subset of studies employed liquid chro-
matography (LC), indicating a variability of results. The studies varied in the specific PFAS
compounds assessed, with common ones including perfluorooctanoic acid (PFOA), perfluo-
rooctanesulfonic acid (PFOS), and perfluorohexanesulfonic acid (PFHxS). Additionally, the
timing of exposure assessment ranged from prenatal (e.g., maternal blood or cord blood) to
postnatal periods, reflecting critical windows of neurodevelopmental susceptibility [52].
These observations highlight the diversity in methods and compounds analyzed, as well as
the broad range of timing the exposure assessments, which collectively contribute to our
understanding of PFAS exposure in relation to neurodevelopmental disorders.

2.3. Outcomes

The assessment of neurodevelopmental outcomes such as the Intelligence Quotient
(IQ), Autism Spectrum Disorder (ASD), and Attention-Deficit Hyperactivity Disorder
(ADHD) in the included studies utilized standard and accepted means of evaluating
neurodevelopmental disorders. The Intelligence Quotient (IQ) was evaluated using widely
recognized tests including Wechsler Intelligence Scale for Children-Fourth Edition (WISC-
IV) and the Full-Scale Intelligence Quotient (FSIQ) [53,54]. For the diagnosis of ASD, studies
often relied on established diagnostic criteria from the Diagnostic and Statistical Manual of
Mental Disorders (DSM-5), employing tools like Mullen Scales of Early Learning (MSEL)
and the Behavioral Assessment System for Children-2 (BASC-2) [55,56]. Finally, ADHD
was assessed and diagnosed using the criteria laid out in the DSM-5. These diagnostic tools
included ADHD Rating Scale (ADHD-RS) and the Child Behavior Checklist (CBCL) [57,58].
These assessment tools ensure that the neurodevelopmental outcomes were accurately
assessed to allow comparison between studies.

2.4. Covariates

Throughout the various studies between PFAS and neurodevelopment, several co-
variates were considered to control for potential confounding variables within each study.
Commonly adjusted covariates included sociodemographic variables such as child’s age,
sex, parental education, household income, and maternal age at childbirth. Additionally,
studies accounted for smoking, country of birth, and quality of the child’s home envi-
ronment. By controlling for certain covariates, the studies reduced bias and confounding
variables to more accurately assess the relationship between PFAS and neurodevelopmental
endpoints, such as IQ, ASD, and ADHD.

2.5. Data Extraction

Data extraction was conducted systematically using a standardized form to ensure
consistency and comprehensiveness across all included studies. Key information collected
included the following: authors’ names, publication year, study design, sample size, and
population characteristics such as age, sex, and geographic location. PFAS exposure assess-
ment was recorded, including the types of PFAS compounds measured, biological sample
type, and concentration levels. For neurodevelopmental outcomes, data on assessment
methods for IQ, ASD, and ADHD were extracted, specifying the tools/criteria used for
evaluation, such as standardized intelligence tests, diagnostic interviews, and rating scales.
Further, sample sizes, confidence intervals, and significance were also noted. Finally, any
covariates that were adjusted for throughout the studies were recorded. Using a system-
atic data extraction process, all necessary information was collected in detail for accurate
comparison between studies.
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3. Results

3.1. The Intelligence Quotient (IQ)

Within a literature search (Table 1), ten studies focusing on the association between
PFAS exposure throughout childhood and the Intelligence Quotient were included [11,59–67].
In total, 14 individual PFAS were included, but only PFOS, PFHxS, and PFOA were
seen in every study. Cognitive assessments were performed using various standardized
tests, primarily the Wechsler Preschool and Primary Scale of Intelligence (WPPSI) and
the Full-Scale Intelligence Quotient (FSIQ). Most studies used either one of these main
tests or a combination of them. However, Harris et al., 2018 chose to use the Kaufman
Brief Intelligence Test (KBIT-2), while Skogheim et al., 2020 employed the Stanford–Binet
Intelligence Test. While each study has different testing parameters, an extensive body of
research has demonstrated that IQs obtained from different intelligence tests substantially
correlate at the group level [68]. The results of the included studies showed conflicting
results, but some studies indicated that there was some significant evidence that PFAS
could have an inhibitory effect on the Intelligence Quotient. Some of the inconsistent results
could be associated with the several covariates such as PFAS exposure levels, child’s age,
and child’s sex.
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Table 1. Summary of articles, results, and evidence on PFAS exposure to the Intelligence Quotient (IQ).

First Author/
Year/Country

Design Sample
Size

Age of Children PFAS
Sample/

Measuring
Method

Exposure Measure Test Type and Indicator Adjustment of Covariates Conclusion

Carly V
Goodman/2023/

Canada [59]
Cohort Study n = 522 Between 3 and 4

PFOA, PFOS,
and PFHxS

Plasma/
UHPLC–
MS/MS

PFOA: 1.68 (1.10–2.50),
PFOS: 4.97 (3.20–6.20),
PFHxS: 1.09 (0.67–1.60)

(µg/L)

Wechsler Preschool and
Primary Scale of

Intelligence, Third Edition
(WPPSI-III), composite

full-scale IQ (FSIQ),
performance IQ (PIQ), and

verbal IQ (VIQ) scores

Gestational week of blood
sampling, maternal age,

pre-pregnancy BMI, country of
birth (Canadian born, foreign

born), maternal level of
education (trade school

diploma or lower, bachelor’s
degree or higher), parity (0, 1,
2+), maternal smoking during

pregnancy (current smoker,
former smoker, never smoked),

study site, and the Home
Observation Measurement of

the Environment (HOME)
score, a continuous measure of
the quality of the child’s home

environment

Each doubling of PFHxS
levels corresponded to a

reduction of 2.0 points (95%
CI: −3.6, −0.5) in FSIQ and

2.9 points (95% CI: −4.7,
−1.1) in PIQ in males.

However, in females, PFHxS
showed no association with

FSIQ or PIQ. PFOA and
PFOS were also linked to
lower PIQ scores in males
(PFOA: B = −2.8, 95% CI:
−4.9, −0.7; PFOS: B = −2.6,
95% CI: −4.8, −0.5), while

in females, they were
slightly positively

associated with PIQ, but not
FSIQ

Iben Have
Beck/2023/

Denmark [60]
Cohort Study n = 967 7 years old

PFOS, PFOA,
PFHxS, PFNA,

and PFDA

Serum/
LC–MS

PFOS: 4.61 (3.08–7.08),
PFOA: 2.48 (1.58–3.49),
PFHxS: 0.33 (0.21–0.50),
PFNA: 0.57 (0.40–0.78),
PFDA: 0.18 (0.13–0.24)

(ng/mL)

Abbreviated version of the
Danish WISC-V, Full-Scale

Intelligence Quotient (FSIQ)
score, and Verbal

Comprehension Index (VCI)
score

Maternal educational level,
BMI, and sex

PFOS and PFNA exposure
and FSIQ remained
significant, with β

coefficients of −1.7 (95% CI:
−3.0, −0.3) and −1.7 (95%

CI: −3.0, −0.4)

Ann M Vuong/2019/
United States [69]

Cohort Study n = 221 3 and 8 years old
PFOA, PFOS,
PFHxS, and

PFNA

Serum/
HPLC–MS/MS

PFOA: 2.4, PFOA: 3.9,
PFHxS: 1.4, PFNA: 0.8

(ng/mL)

Wechsler Intelligence Scale
for Children-Fourth Edition
(WISC-IV) and Full Scale IQ

(FSIQ)

Maternal sociodemographic,
behavioral factors, and

biological measurements of
environmental chemical

Findings do not support
that PFAS are adversely

associated with cognitive
function

Hui Wang/2023/
China [62]

Cohort Study n = 2031 4 years old

PFOA, PFOS,
PFNA, PFUA,
PFDA, PFHxS,
PFBS, PFDoA,
PFHpA, and

PFOSA

Plasma/
HPLC–MS/MS

PFOA: 13.12 (9.36–15.50),
PFOS: 11.3 (6.66–13.68),
PFNA: 2.05 (1.27–2.49),
PFDA: 2.16 (1.18–2.67),
PFHxS: 0.62 (0.42–0.69)

(ng/mL)

Wechsler Preschool and
Primary Scales of

Intelligence-Fourth Edition
(WPPSI-IV)

Maternal age at delivery,
maternal educational level,

maternal pre-pregnancy body
mass index, parity, maternal

folic acid intake during
pregnancy, maternal place of

birth, maternal active/passive
smoking status during
pregnancy, maternal

freshwater fish intake during
pregnancy, and self-reported

economic status

No significant associations
between ln-transformed

nine individual PFAS and
child full scale IQ (FSIQ) or
subscale IQ after adjusting
for potential confounders

Zeyan Liew/2018/
Norway [63]

Cohort Study n = 1592 5 years old

PFOS, PFOA,
PFHxS, PFNA,
PFHpS, PFDA,

and PFOSA

Plasma/
LC–MS/MS

PFOS: 28.10 (21.60–35.80),
PFOA: 4.28 (3.51–5.49),
PFHxS: 1.07 (0.76–1.38),
PFNA: 0.46 (0.36–0.57),
PFHpS: 0.37 (0.27–0.49),
PFDA: 0.17 (0.14–0.22),
PFOSA: 2.32 (1.38–4.16)

(ng/mL)

Wechsler Primary and
Preschool Scales of

Intelligence–Revised
(WPPSI-R)

Maternal age at delivery,
parity, maternal IQ,

socioeconomic status,
maternal smoking during

pregnancy, maternal alcohol
consumption during
pregnancy, maternal

prepregnancy BMI, child’s sex

There is no reliable evidence
establishing a connection

between prenatal exposure
to PFAS and IQ scores in
children at the age of five
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Table 1. Cont.

First Author/
Year/Country

Design Sample
Size

Age of Children PFAS
Sample/

Measuring
Method

Exposure Measure Test Type and Indicator Adjustment of Covariates Conclusion

Yan Wang/2015/
United States [64]

Cohort Study n = 120 5 years old

PFHxS, PFOA,
PFOS, PFNA,

PFDeA,
PFUnDA,
PFDoDA,

PFHpA, and
PFHxA

Serum/
HPLC–MS/MS

PFHxS: 0.45 (0.35–0.57),
PFOA: 2.00 (1.72–2.33),
PFOS: 11.5 (10.2–13.07),
PFNA: 1.33 (1.12–1.59),
PFDeA: 0.39 (0.34–0.44),

PFUnDA: 3.05 (2.37–3.94),
PFDoDA: 0.29 (0.25–0.34)

(ng/mL)

Full-Scale Intelligence
Quotient (FSIQ), verbal IQ
(VIQ) and performance IQ

(PIQ)

Maternal age, maternal
education, previous live births,
family income, and maternal

fish consumption during
pregnancy

Exposure to two types of
long-chain PFAS during

pregnancy has been linked
to lower IQ scores in

children

Maria H
Harris/2018/ United

States [65]
Cohort Study n = 1226 3 years old

PFOA, PFOS,
PFHxS, PFNA,

MeFOSAA, and
PFDeA

Plasma/
HPLC–MS/MS

PFOA: 4.4 (3.1–6.0), PFOS:
6.2 (4.2–9.7), PFHxS: 1.9

(1.2–3.4), PFNA: 1.5
(1.1–2.3), MeFOSAA: 0.3
(<LOD −0.6), PFDeA: 0.3

(0.2–0.5) (ng/mL)

Peabody Picture Vocabulary
Test (PPVT-III), Wide Range
Assessment of Visual Motor

Abilities (WRAVMA),
Kaufman Brief Intelligence
Test (KBIT-2), and Visual

Memory Index of the Wide
Range Assessment of

Memory and Learning
(WRAML2)

Child sex, age at cognitive
testing, maternal

race/ethnicity, age, maternal
and paternal education,

socioeconomic status and
maternal intelligence scores

Prenatal PFAS were
associated with both better
and worse cognitive scores

Miranda J.
Spratlen/2020/

United States [11]
Cohort Study n = 110 Children ages 3–7

years

PFOS, PFOA,
PFHxS, PFNA,

PFDS, PFBS,
PFOSA, PFHxA,
PFHpA, PFDA,
PFUnDA, and

PFDoDA

Plasma/
HPLC–MS/MS

PFOS: 6.27 (1.05, 33.7),
PFOA: 2.37 (0.18, 8.14),

PFNA: 0.45 (<LOQ, 10.3),
PFHxS: 0.69 (<LOQ, 15.8),
PFDS: 0.13 (<LOQ, 0.64)

(ng/mL)

Bayley Scales of Infant
Development (BSID-II),

Mental Development Index
(MDI), Psychomotor

Development Index (PDI),
and Wechsler Preschool and
Primary Scale of Intelligence

(WPPSI)

Maternal age; material
hardship during pregnancy;

pre-pregnancy BMI; maternal
IQ; maternal race; maternal
education; home smoking
exposure; marital status;

parity; child’s gestational age
at birth; exact child age on test

date; child’s sex; maternal
demoralization score; and
child breastfeeding history

Findings on prenatal PFAS
exposure and child

neurodevelopment are
inconsistent

Thea S.
Skogheim/2020/

Norway [66]

Longitudinal
Prospective

Study
n = 944 3.5 years old

PFOA, PFNA,
PFDA, PFUnDA,
PFHxS, PFHpS,

and PFOS

Plasma/
LC–MS/MS

PFOA: 2.50 (1.77–3.21),
PFNA: 0.41 (0.29–0.53),
PFDA: 0.15 (0.10–0.23),

PFUnDA: 0.22 (0.14–0.32),
PFHxS: 0.65 (0.46–0.88),
PFHpS: 0.15 (0.10–0.20),
PFOS: 11.51 (8.77–14.84)

(ng/mL)

The Preschool Age
Psychiatric Assessment

interview, Child
Development Inventory and

Stanford–Binet (5th
revision)

Maternal age, maternal
education, maternal fish

intake, parity, maternal ADHD
symptoms, child sex,

premature birth, birth weight,
maternal BMI, maternal

smoking, maternal alcohol
consumption, maternal
anxiety/depression and
maternal iodine intake

No consistent evidence to
conclude that prenatal
exposure to PFAS are

associated with cognitive
dysfunctions in preschool
children aged three and a

half years

Boya Zhang/2024/
China [67]

Cohort Study n = 327 7 years old

PFHpA, PFOA,
PFNA, PFDA,

PFUnDA,
PFDoDA, PFBS,
PFHxS, PFHpS,

PFOS, PFDS,
and PFOSA

Serum/
UHPLC–
MS/MS

PFHpA: 0.27 (0.23–0.30),
PFOA: 3.51 (3.29–3.75),
PFNA: 0.32 (0.28–0.36),
PFDA: 0.86 (0.76–0.96),

PFUnDA: 0.61 (0.57–0.65),
PFDoDA: 0.13 (0.12–0.14),

PFBS: 0.08 (0.07–0.09),
PFHxS: 0.09 (0.08–0.10),
PFHpS: 0.06 (0.05–0.07),
PFOS: 2.10 (1.98–2.22)

(ng/mL)

Wechsler Intelligence Scale
for Children-Chinese
Revised (WISC-CR)

Maternal age at delivery,
parity, maternal educational

level, child’s sex, annual
household income, pet

ownership, changes in marital
status, pre-pregnancy BMI

Increased prenatal exposure
to PFAS negatively affected

the IQ of school-aged
children



Environments 2024, 11, 188 8 of 20

3.2. Attention-Deficit Hyperactivity Disorder (ADHD)

As a results of the literature search (Table 2), nine primary research studies were
identified that focused on PFAS exposure on Attention-Deficit Hyperactivity Disorder
(ADHD) [61,66,70–76]. While eleven PFAS were examined throughout the different studies,
PFOS and PFOA were the only PFAS that were included in every study. While there is not a
current standardized ADHD test, various tests with the main ADHD criteria being outlined
in the Diagnostic and Statistical Manual of Mental Disorders were utilized in the different
studies. These include commonly used diagnostic exams such as Attention Syndrome Scale
of the Child Behavior Checklist (CBCL-ADHD) and Behavioral Assessment System for
Children-2 (BASC-2). Most studies did not show any association between PFAS exposure
and ADHD. However, a few studies showed conflicting results. Skogheim et al., 2021 [74]
and Itoh et al., 2022 [75] indicated that there could be an inverse, protective effect of PFAS.
Furthermore, Kim et al., 2023 [72] and Vuong et al., 2021 [61] indicated that there could be
an positive association between PFAS exposure and ADHD. These conflicting results could
be associated with the inability to conduct consistent ADHD diagnosis.

3.3. Autism Spectrum Disorder (ASD)

Through a systematic literature review (Table 3), six primary clinical studies were
identified that focus on associating PFAS exposure with Autism Spectrum Disorder
(ASD) [31,74,77–80]. While ten different PFAS were analyzed, PFOA PFOS, PFHxS, and
PFNA appeared in every study. The diagnosis of Autism Spectrum Disorder was con-
ducted through several different standardized exams. The Mullen Scales of Early Leaning
(MSEL) or the International Classification of Diseases (ICD)-8 were used in diagnosis in
every study, except for Lyall et al., 2018 [80], which used the DSM-5 criteria for diagnosis.
Additionally, the Vineland Adaptive Behavioral Scale (VABS) and the Autism Diagnostic
Observation Schedule (ADOS) were utilized in corroborating the results of the MSEL and
the ICD-8. A majority of the studies showed significant association between PFAS exposure
and increased odds of ASD. However, two studies that showed a low protective effect were
Lyall et al., 2018 [80] and Skogheim et al., 2021 [74]. This conflicting result could be due
to the difference in diagnostic method utilized in the study. The results of these studies
indicate that PFAS could have an inhibitory effect on neurodevelopment leading to ASD.
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Table 2. Summary of articles, results, and evidence on PFAS exposure to Attention-Deficit Hyperactivity Disorder (ADHD).

First Author/
Year/Country

Design Sample
Size

Age of Children PFAS
Sample/

Measuring
Method

Exposure Measure Test Type and Indicator Adjustment of Covariates Conclusion

Joan Forns/2020/
Norway [70]

Cross-
Sectional

Study
n = 518

3, 6, 12, and
24 months of

age

PFOS and
PFOA

Serum/
HPLC–
MS/MS

PFOS: 20.19 (4.1–87.3),
PFOA: 1.83 (0.5–5.1)

(ng/mL)

Attention Syndrome
Scale of the Child

Behavior Checklist
(CBCL-ADHD), Hyper-

activity/Inattention
Problems subscale of the

Strengths and
Difficulties

Questionnaire (SDQ-
Hyperactivity/Inattention),

and ADHD Criteria of
Diagnostic and

Statistical Manual of
Mental Disorders, 4th ed.

(ADHD-DSM-IV)

Maternal prepregnancy
body mass index, maternal
age at delivery, maternal

education, maternal
smoking during

pregnancy, maternal parity,
duration of total

breastfeeding, and
child sex

Exposure to PFOS or
PFOA early in life was
not linked to ADHD

during childhood, with
odds ratios (ORs)

varying between 0.96
(95% CI: 0.87, 1.06) and
1.02 (95% CI: 0.93, 1.11).
Analysis using stratified
models indicates that the

impact of PFAS may
vary based on the child’s

sex and the mother’s
level of education

Louise
Dalsager/2021/
Denmark [71]

Cohort Study n = 1138 2.5–5 years old
PFHxS, PFOS,
PFOA, PFNA,

and PFDA

Serum/
LC–MS/MS

PFOS: 4.65 (11.22),
PFOA: 2.43 (6.40),
PFHxS: 0.32 (0.81),
PFNA: 0.58 (1.24),
PFDA: 0.18 (0.37),

Median (95th
percentile) (ng/mL)

Child Behavior Checklist
1.5–5

Parity, maternal
educational level, parental

psychiatric diagnosis,
child sex

No correlation has been
found between PFAS
levels in mothers or

children and symptoms
of ADHD

Johanna Inhyang
Kim/2023/South

Korea [72]

Prospective
Cohort Study

n = 521
2, 4, and 8 years

old

PFOA, PFNA,
PFDA,

PFUnDA,
PFHxS, and

PFOS

Serum/
HPLC–
MS/MS

PFOA: 3.61 (1.91–6.72),
PFNA: 0.99 (0.45–2.96),
PFDA: 0.34 (0.12–0.94),

PFUnDA: 0.45
(0.17–0.94), PFHxS:

1.01 (0.54–1.95), PFOS:
3.94 (1.80–7.47)

(ng/mL

ADHD Rating Scale IV
(ARS)

Mother’s age during
pregnancy, mother’s

educational attainment,
father’s educational

background,
socioeconomic conditions,
maternal smoking during
pregnancy, use of assisted
reproductive technologies,

maternal stress levels
during pregnancy

PFAS exposure at age 2
was associated with

ADHD development at
age 8

Ann M
Vuong/2021/

United States [61]
Cohort Study n = 240

5 and 8 years
old

PFOA, PFHxS,
PDNA, and

PFOS

Serum/
HPLC–
MS/MS

PFOA: 5.3 (1.7), PFOS:
12.8 (1.7), PFHxS: 1.5

(0.8), PFNA: 0.90 (1.5),
mean (SD) (ng/mL)

The Behavioral
Assessment System for

Children-2 (BASC-2) and
the Diagnostic Interview

Schedule for
Children–Young Child

(DISC-YC) were used to
evaluate ADHD
symptoms and

diagnostic criteria

Maternal age,
race/ethnicity, education,

family income, ln-maternal
serum cotinine (ng/mL),

maternal depression,
marital status, maternal IQ,

parity, and child sex

PFOS and PFNA were
consistently linked to

hyperactive-impulsive
ADHD traits across two

validated assessment
tools
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Table 2. Cont.

First Author/
Year/Country

Design Sample
Size

Age of Children PFAS
Sample/

Measuring
Method

Exposure Measure Test Type and Indicator Adjustment of Covariates Conclusion

Thea S.
Skogheim/2021/

Norway [74]
Cohort Study n = 821 3 years old

PFOA, PFNA,
PFDA,

PFUnDA,
PFHxS,

PFHpS, and
PFOS

Plasma/
LC–MS/MS

PFOA: 2.46 (3.46–2.86),
PFNA: 0.42 (0.20–0.49),
PFDA: 0.19 (0.15–0.23)

(ng/mL)

Adult ADHD
Self-Report Scale (ASRS

screener)

Child sex, birth weight,
and small for gestational

age (SGA); maternal age at
delivery, education, parity,
pre-pregnancy body mass

index (BMI, kg/m2),
self-reported smoking and

alcohol intake during
pregnancy, as well as

FFQ-based estimates of
seafood (g/day), and
dietary iodine intake

(µg/day)

Several PFAS (PFUnDA,
PFDA, and PFOS) were

inversely associated
with odds of ADHD

and/or ASD

Sachiko
Itoh/2022/
Japan [75]

Prospective
Cohort Study

n = 770 8 years old

PFHxS, PFOS,
PFHxA,
PFHpA,

PFOA, PFNA,
PFDA,

PFUnDA,
PFDoDA,

PFTrDA, and
PFTeDA

Plasma/
UHPLC–
MS/MS

PFHxS: 0.32
(0.22–0.41), PFOS: 6.66
(4.92–8.31), PFOA: 2.48
(1.50–3.00), PFNA: 1.16
(0.79–1.38), PFDA: 0.53
(0.34–0.62), PFUnDA:

1.37 (0.73–1.73),
PFDoDA: 0.18

(0.12–0.23), PFTrDA:
0.35 (0.24–0.44)

(ng/mL)

ADHD Rating Scale
(ADHD-RS)

Age of the mother at
delivery, number of

previous pregnancies,
level of education, body

mass index before
pregnancy, alcohol

consumption during
pregnancy, smoking habits
during pregnancy, and the

sex of the child

Higher the maternal
PFAS levels, lower the

risk of ADHD symptoms
at 8 y of age

Ilona
Quaak/2016/The
Netherlands [76]

Cohort Study n = 76 18 months

PFOA, PFOS,
PFHxS,
PFHpS,

PFNA, PFDA,
and PFUnDA

Plasma/
LC–MS/MS

PFOA: 905.6 (437.1),
PFOS: 1583.6 (648.3),
PFHxS: 140.0 (69.2),
PFHpS: 35.6 (21.3),
PFNA: 140.0 (61.8),
PFDA: 52.2 (20.9),

PFUnDA: 32.05 (11.9),
Mean (SD) (ng/L)

Child Behavior Checklist
1.5–5 (CBCL)

Family history, educational
level, smoking, alcohol use
and illicit drug use during

pregnancy

Prenatal exposure to
PFAS showed no

significant associations
with ADHD scores

Thea S.
Skogheim/2020/

Norway [66]
Cohort Study n = 944 3.5 years old

PFHpS, PFOS,
PFHxS, PFOA,

PFDA,
PFUnDA, and

PFNA

Plasma/
LC–MS/MS

PFOA: 2.61 (1.77–3.21),
PFNA: 0.45 (0.29–0.53),
PFDA: 0.19 (0.10–0.23),

PFUnDA: 0.25
(0.05–0.32), PFHxS:

0.79 (0.46–0.88),
PFHpS: 0.16

(0.10–0.20), PFOS:
12.32 (8.77–14.84),

(ng/mL)

The Preschool Age
Psychiatric Assessment

interview, Child
Development Inventory
and Stanford–Binet (5th

revision)

Maternal age, maternal
education, maternal fish
intake, parity, maternal

ADHD symptoms, child
sex, premature birth, birth

weight, maternal BMI,
maternal smoking,
maternal alcohol

consumption, maternal
anxiety/depression and
maternal iodine intake

Consistent evidence was
not found to link

prenatal PFAS exposure
with ADHD symptoms

or cognitive
impairments in

preschool children
around three and a half

years old



Environments 2024, 11, 188 11 of 20

Table 2. Cont.

First Author/
Year/Country

Design Sample
Size

Age of Children PFAS
Sample/

Measuring
Method

Exposure Measure Test Type and Indicator Adjustment of Covariates Conclusion

Zeyan Liew/2015/
United States [73]

Cohort Study n = 220
Average 10.7

years old

PFOS, PFOA,
PFHxS,
PFHpS,

PFNA, and
PFDA

Plasma/
LC–MS/MS

PFOS: 26.80 (19.20,
35.00), PFOA: 4.06
(3.08, 5.50), PFHxS:

0.84 (0.61, 1.15),
PFHpS: 0.30 (0.20,

0.40), PFNA: 0.42 (0.34,
0.52), PFDA: 0.15 (0.11,

0.20), (ng/mL)

ICD-10 codes F90.0

Maternal age at delivery,
socioeconomic status,

maternal smoking, alcohol
drinking during

pregnancy, mother’s
self-reported psychiatric

illnesses, child’s birth year,
child’s sex

Evidence does not
consistently support a
link between prenatal
PFAS exposure and an

increased risk of ADHD

Table 3. Summary of articles, results, and evidence on PFAS exposure to Autism Spectrum Disorder (ASD).

First Author/
Year/Country

Design Sample
Size

Age of Children PFAS
Sample/

Measuring
Method

Exposure Measure Test Type and Indicator Adjustment of Covariates Conclusion

Thea S.
Skogheim/2021/

Norway [74]
Cohort Study n = 400 3 years old

PFOA, PFNA,
PFDA,

PFUnDA,
PFHxS,

PFHpS, and
PFOS

Plasma/
LC–MS/MS

PFOA: 2.46 (3.46–2.86),
PFNA: 0.42 (0.20–0.49),
PFDA: 0.19 (0.15–0.23)

(ng/mL)

Diagnoses of “pervasive
developmental
disorders” were

identified using ICD-10
codes F84.0, F84.1, F84.5,

F84.8, or F84.9

Child’s sex, birth weight,
and status as small for
gestational age (SGA);

maternal age at delivery,
education level, number of

previous births,
pre-pregnancy body mass

index (BMI, kg/m2),
self-reported smoking and

alcohol consumption
during pregnancy, as well

as estimates of seafood
intake (g/day) and dietary

iodine intake (µg/day)
based on a food frequency

questionnaire (FFQ).

An increased risk of
Autism Spectrum

Disorder (ASD) was
observed in the second

quartile of PFOA
exposure [OR = 1.71
(95% CI: 1.20, 2.45)].

Conversely, PFUnDA,
PFDA, and PFOS were

associated with a
reduced likelihood of

ADHD, and the overall
PFAS mixture showed a
decreased risk of ASD

[OR = 0.76 (95% CI: 0.64,
0.90)].
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Table 3. Cont.

First Author/
Year/Country

Design Sample
Size

Age of Children PFAS
Sample/

Measuring
Method

Exposure Measure Test Type and Indicator Adjustment of Covariates Conclusion

Jiwon Oh/2022/
United States [31]

Case–control
Study

n = 551 2–5 years old

PFOS, PFHxS,
PFNA, PFDA,

PFPeA,
PFUnDA,

PFBS, PFHxA,
MeFOSAA,

and EtFOSAA

Serum/
HPLC–
MS/MS

PFOA: 2.20 (0.91, 6.30),
PFOS: 2.01 (0.81, 8.01),

PFHxS: 0.59 (0.20,
3.05), PFNA: 0.71 (0.26,
2.49), PFDA: 0.14 (0.06,

0.49), PFPeA: 0.51
(0.20, 1.33), PFHpA:

0.23 (0.03, 1.00),
PFUnDA: 0.03 (<LOD,

0.13), PFBS: <LOD
(<LOD, 0.10), PFHxA:
<LOD (<LOD, 0.43),

MeFOSAA: 0.10
(<LOD, 1.56),

EtFOSAA: <LOD
(<LOD, 0.06) (ng/mL)

Mullen Scales of Early
Learning (MSEL) and

Vineland Adaptive
Behavior Scales (VABS)

are combined to
generate an Early

Learning Composite
(Composite) score

Child’s sex, age at
sampling, recruitment

regional center; sampling
year; gestational age at

delivery, maternal factors,
parity, breastfeeding

duration, race/ethnicity,
and socioeconomic status.

PFOA was linked to
higher odds of ASD,

with an odds ratio (OR)
of 1.99 per log ng/mL
increase (95% CI: 1.20,

3.29). PFHpA also
showed increased odds
of ASD with an OR of

1.61 (95% CI: 1.21, 2.13).
Conversely,

perfluoroundecanoic
acid (PFUnDA) was

associated with lower
odds of ASD, showing
an OR of 0.43 (95% CI:

0.26, 0.69). Additionally,
mixtures of PFAS were

associated with
increased odds of ASD,
with an average OR of
1.57 and a range from

the 5th to 95th percentile
of 1.16 to 2.13.

Jiwon Oh/2021/
United States [77] Cohort Study n = 57 3 years old

PFOA, PFOS,
PFHxS, PFNA,

PFDA,
PFUnDA,
PFDoDA,

MeFOSAA,
and EtFOSAA

Serum/
Reverse-

Phase
LC–MS/MS

PFOA: 0.9 (0.3–2.3),
PFOS: 3.0 (1.1–6.8),
PFHxS 0.4 (0.2–1.6),
PFNA 0.5 (0.2–1.0),
PFDA 0.1 (<LOD
−0.4), PFUnDA 0.1

(<LOD −0.3),
PFDoDA: <LOD

(<LOD −0.1),
MeFOSAA: 0.1 (<LOD

−0.8), EtFOSAA
<LOD (<LOD-<LOD)

(ng/mL)

Autism Diagnostic
Observation Schedule
(ADOS) and Mullen

Scales of Early Learning
(MSEL)

Child’s sex, birth year,
maternal vitamin intake in

the first month of
pregnancy, maternal

education, and
homeownership.

PFOA and PFNA were
positively associated
with ASD risk, with

relative risks (RR) of 1.20
(95% CI: 0.90, 1.61) and
1.24 (95% CI: 0.91, 1.69),

respectively, for each
2-fold increase in
concentration. In

contrast, PFHxS was
negatively associated

with ASD risk, showing
an RR of 0.88 (95% CI:

0.77, 1.01).
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Table 3. Cont.

First Author/
Year/Country

Design Sample
Size

Age of Children PFAS
Sample/

Measuring
Method

Exposure Measure Test Type and Indicator Adjustment of Covariates Conclusion

Jeong Weon
Choi/2024/

United States [78]
Cohort Study n = 280 3 years old

PFHxS, PFOS,
PFOA, PFNA,

and PFDA

Serum/
Reverse-

Phase
LC–MS/MS

PFHxS: 0.45 (0.2–1.60),
PFOS: 2.93 (1.10–7.00),
PFOA: 0.87 (0.35–2.10),
PFNA: 0.48 (0.20–1.00),

PFDA 0.14 (<LOD
−0.40) (ng/mL)

Autism Diagnostic
Observation Schedule
and Mullen Scales of

Early Mullen Scales of
Early Learning

Child sex, child age at
assessment, year of birth,

gestational age at delivery,
maternal age at delivery,

parity, maternal
pre-pregnancy BMI,

maternal race/ethnicity,
maternal education,

breastfeeding duration,
homeownership, maternal

smoking status during
pregnancy, and child ASD

outcome group.

PFOS, PFNA, and PFDA
were associated with

several behavioral
problems among

children diagnosed with
ASD.

Hyeong-Moo
Shin/2020/

United States [79]

Case–control
Study

n = 239 2–5 years old
PFOA, PFOS,
PFHxS, and

PFNA

Plasma/
Reverse-

Phase
HPLC–
MS/MS

PFOA: 1.07 (0.37–3.40),
PFOS: 3.10

(1.08–10.03), PFHxS:
0.50 (0.20–1.63), PFNA:

0.50 (<LOD −1.23)
(ng/mL)

Mullen Scales of Early
Learning (MSEL), the

Vineland Adaptive
Behavior Scales (VABS),

Autism Diagnostic
Interview-Revised
(ADI-R), Autism

Diagnostic Observation
Schedules-Generic

(ADOS-G)

Age and sex of the child at
the time of assessment,
year of birth, regional
center of recruitment,
number of previous

pregnancies, gestational
age at birth, maternal

race/ethnicity, place of
maternal birth, mother’s
age at delivery, maternal

BMI before pregnancy,
vitamin intake around
conception, duration of

breastfeeding.

Increases in PFHxS and
PFOS levels were

tentatively connected to
a higher risk of ASD
diagnosis in children.

For each nanogram per
milliliter increase,

PFHxS had an odds ratio
of 1.46 (95% CI: 0.98,

2.18) and PFOS had an
odds ratio of 1.03 (95%

CI: 0.99, 1.08).

Kristen
Lyall/2018/

United States [80]

Case–control
Stude

n = 553 15–19 weeks
gestational age

Et-PFOSA,
Me-PFOSA,

PFDeA,
PFHxS, PFNA,
PFOA, PFOS,

PFOSA

Serum/
Negative-ion

Turbo Ion
Spray–

tandem mass
spectrometry

Et-PFOSA: 0.68 (0.63,
0.73), Me-PFOSA: 1.14

(1.07, 1.23), PFDeA:
0.17 (0.16, 0.18),

PFHxS: 1.39 (1.29,
1.49), PFNA: 0.60 (0.57,
0.63), PFOA: 3.58 (3.41,
3.76), PFOS: 17.5 (16.8,

18.3), PFOSA: 0.11
(0.10, 0.11) (ng/mL)

Diagnostic and
Statistical Manual of

Mental Disorders,
Fourth Edition

(DSM-IV-TR) criteria

Child sex, month and year
of birth, maternal age,

country of maternal birth,
maternal race/ethnicity,

parity, and maternal
education.

While most PFAS
prenatal concentrations
were not significantly
linked to ASD, notable

inverse associations
were observed for
perfluorooctanoate

(PFOA) and
perfluorooctane
sulfonate (PFOS).

Specifically, the adjusted
odds ratios for the

highest versus lowest
quartiles were 0.62 (95%
CI: 0.41, 0.93) for PFOA
and 0.64 (95% CI: 0.43,

0.97) for PFOS.
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4. Discussion

In this review, we systematically gathered the current available evidence on the effects
of early development PFAS exposure with respect to the outcome of neurobehavioral
defects in children. Our results indicated that there is a potential effect of PFAS exposure
throughout development on the Intelligence Quotient, but the results are inconclusive. Fur-
thermore, recent evidence (since 2022) highlights that PFAS exposure throughout gestation
and early childhood has significant adverse effects on both ASD and ADHD. Although
some studies have produced conflicting results, the latest research underscores the serious
impact of PFAS on these neurodevelopmental disorders, emphasizing the importance of
continued investigation to better understand these associations.

Within the past decade, researchers have considered PFAS exposure during gestation
and childhood and its association with a variety of neurodevelopmental disorders. There
are data supporting the plausibility of PFAS exposure as a risk factor on neurodevelopment
through various routes of exposure. Initial exposure of PFAS begins with exposure of the
developing fetus [81]. This is due to the ability for PFAS to cross the placenta barrier from
a pregnant woman to her fetus [82–84]. PFAS has also been shown to expose developing
children through breast milk [85–88]. These early exposure pathways have been positively
associated with cardiovascular [89], immunologic [90,91], sexual maturation [92,93], thy-
roid function [94–96], kidney function [97,98], and neurodevelopment outcomes [99–101].
Neurodevelopmental Disorders are a class of disorders affecting brain development and
function and are characterized by wide genetic and clinical variability [102]. Accord-
ing to the Diagnostic and Statistical Manual of Mental Disorders, Fifth Edition (DSM-5),
NDDs comprise of Autism Spectrum Disorder, attention-deficit/hyperactivity disorder,
and intellectual disabilities [103].

Environmental chemicals and toxins have been correlated with a higher risk of neu-
rodevelopmental impairments [104]. Epidemiological research supports these conclusions
by documenting higher rates of birth defects, developmental disabilities, and reduced IQ
levels in areas where mothers and children are exposed to various environmental pollu-
tants [105]. The Intelligence Quotient (IQ) is a measure of the progress an individual had
made in mental or cognitive development compared to same-aged peers [106]. For groups
with neurodevelopmental disorders, mean IQ scores are generally below the population
normative mean [107]. The Intelligence Quotient was utilized to assess generalized intel-
lectual disabilities to PFAS exposure. Studies using the Wechsler Preschool and Primary
scales of Intelligence (WPPSI) and the Full-Scale Intelligence Quotient (FSIQ) showed
conflicting results on early PFAS exposure to intelligence disabilities. Some studies indi-
cated that there was no association between PFAS and inhibition of IQ [11,62,63,66,69].
However, other studies found associations with multiple PFAS and their adverse effects
on intelligence [59,60,64,65,67]. There were a few confounding variables that adjusted the
association. Goodman et al., 2023 noted that there was a significant association difference
between the sex of the child with intellectual deficiencies and that this could be due to
sex-specific effect by one or more mechanisms. This suggests that sex could act as an
effect modifier rather than just a confounder. While some studies controlled for sex, they
may have missed important variations by not examining how sex modifies the associa-
tion between PFAS exposure and neurodevelopmental outcomes. Future studies should
consider stratified analyses or interaction terms to better understand how sex influences
these associations.

Attention-Deficit Hyperactivity Disorder (ADHD) is among the most prevalent neu-
rodevelopmental disorders in children, marked by difficulties with attention, excessive ac-
tivity, and impulsive behavior [108]. Various epidemiological studies have explored the link
between early exposure to PFAS and the onset of ADHD during childhood [61,66,70–76].
Early studies did not find any associations between PFAS and ADHD, however more
recent studies have discovered that there is a significant association. In 2022, there were
significant changes within the DSM-5 for the diagnosis of ADHD to make the diagnosis
more accurate [109]. It was previously presumed that any symptoms of inattention and/or



Environments 2024, 11, 188 15 of 20

hyperactivity–impulsivity was secondary to ASD and not due to an additional ADHD diag-
nosis [110]. This could lead to misdiagnosis in ADHD diagnosis, potentially distorting the
results of earlier studies on the link between PFAS and ADHD. However, newer research
has found a relationship between PFAS exposure at age 2 and the risk of developing ADHD
by age 8 [72].

Over the past two decades, the prevalence of Autism Spectrum Disorders has progres-
sively increased [111]. Autism Spectrum Disorder (ASD), characterized by deficits in social
communication and restricted, repetitive behaviors or interests, affects approximately 2.3%
of 8-year-old children in the US [112]. Studies using the Mullen Scales of Early Learning
(MSEL) determined that PFOA had the strongest association with risk of ASD with an
odds ratio [OR] per ng/mL increase: 1.99 (95% confidence interval [CI]: 1.20–3.29) [31].
PFOS and PFHxS exhibited borderline associations with elevated risks of Autism Spectrum
Disorder (ASD). Specifically, PFOS had an odds ratio of 1.46 (95% CI: 0.98–2.18), suggesting
a potential increase in risk, while PFHxS had an odds ratio of 1.03 (95% CI: 0.99–1.08),
indicating a similar, though less pronounced, association [79]. However, the remaining
PFAS investigated did not show any significant relationship with ASD. The inability to
determine association between some PFAS and ASD could be due to the inability to mea-
sure PFAS in biological samples over the limit of detection (LOD). Furthermore, evaluating
co-occurring conditions in Autism Spectrum Disorder (ASD) is difficult due to the overlap
of symptoms with other disorders, the risk of diagnostic overshadowing, and the often
unclear presentation of symptoms. These factors make it challenging to accurately assess
and differentiate additional conditions in individuals with ASD [113].

Previous studies have considered neurodevelopment as one of the most sensitive
endpoints for PFAS exposure. The findings of this extensive review have found significant
associations between early-life PFAS exposure and the prevalence neurodevelopmental
disorders. Given there is a ubiquitous exposure to PFAS, investigating the association
between early-life exposure and neurodevelopmental disorders provides valuable informa-
tion in understanding PFAS toxicity. Furthermore, the increasing prevalence and improved
diagnostic techniques for neurodevelopmental disorders makes it essential to understand
the detrimental impacts of environmental pollutants on human health.

5. Conclusions

In this review, PFAS exposure through neurodevelopment was strongly associated
with neurodevelopmental disorders, such as ADHD and ASD, and potentially an inhibitory
effect on IQ. Importantly, these findings indicate that the ubiquitous exposure of PFAS
throughout gestation and into early childhood development could lead to neurodevel-
opmental disorders. However, there are notable data gaps that need addressing. For
instance, high limits of detection (LODs) may have hindered the identification of associa-
tions between PFAS and NDD. Developing more sensitive analytical methods for detecting
PFAS in biological matrices could enable the identification of lower levels of PFAS and
provide crucial data. Further investigation using larger prospective cohort studies with
standardized diagnostic methods is essential to confirm these results and elucidate the
relationships between PFAS structures and associated risks. Expanding research to fill these
data gaps will offer valuable insights into the potential biological mechanisms underlying
these adverse effects and guide future studies in this field.
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